Asymmetric Cyclization/Hydrosilylation of Functionalized 1,6-Dienes Catalyzed by Enantiomerically Pure Palladium Pyridine-Oxazoline Complexes

Nicholas S. Perch and Ross A. Widenhoefer*

Duke University P. M. Gross Chemical Laboratory Durham, North Carolina 27708-0346

Received February 12, 1999

The development of efficient asymmetric annulation protocols is of central importance in organic synthesis due to the wealth of biologically active and naturally occurring carbocycles.¹ Enantioselective catalysis employing transition metal complexes remains an attractive approach toward the synthesis of optically active carbocycles due to the development of numerous catalytic carbocyclization protocols² and due to the rapid growth of asymmetric catalysis in organic synthesis.³ However, most efficient enantioselective transition metal-catalyzed procedures involve the addition of an H–X bond [X = H, Si, B] across a prochiral C=X bond [X = O, N, C] or oxidation of a prochiral olefin.³ In contrast, highly enantioselective catalytic protocols which form C–C bonds are less common,⁴ and efficient enantioselective carbocyclization protocols remain limited.⁵

Cyclization/hydrosilylation of dienes⁶ and enynes⁷ is emerging as a potential route toward the synthesis of functionalized carbocycles. However, the utility of cyclization/hydrosilylation has been limited by the absence of an asymmetric protocol. Our contribution to this growing area has been the development of Pd-catalyzed protocols for the cyclization/hydrosilylation of functionalized 1,6⁻⁸ and 1,7-dienes.⁹ For example, reaction of triethylsilane and dimethyl diallylmalonate (1) in the presence of (phen)PdMe(OEt₂)⁺ BAr'₄⁻ [phen = 1,10-phenanthroline; Ar' = 3,5-C₆H₃(CF₃)₂] (2) at 0 °C for 5 min led to the isolation of the *trans*-silylated cyclopentane **3** in 93% yield (98% trans) (Scheme 1).⁸ Significantly, the high activity and exceptional diastereoselectivity displayed by our Pd-catalyzed procedure pointed to the

(3) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis: Wiley: New York, 1994. (b) Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993.

(4) Notable examples include cyclopropanation and allylic substitution.³ (5) For key examples, see: (a) Shibisaki, M.; Boden, C. D. J.; Kojima, A. *Tetrahedron* **1997**, *53*, 7371. (b) Overman, L. E. *Pure Appl. Chem.* **1994**, 61 (423. (c) Goeke, A.; Sawamura, M.; Kuwano, R.; Ito, Y. *Angew. Chem.*, *Int. Ed. Engl.* **1996**, *35*, 662. (d) McKinstry, L.; Livinghouse, T. *Tetrahedron* **1994**, *50*, 6145. (e) Barnhart, R. B.; Wang, X.; Noheda, P.; Bergens, S. H.; Whelan, J.; Bosnich, B. J. Am. Chem. Soc. **1994**, *116*, 1821. (f) Doyle, M. P.; van Oeveren, A.; Westrum, L. J.; Protopopova, M. N.; Clayton, T. W. J. Am. Chem. Soc. **1991**, *113*, 8982.

(6) (a) Molander, G. A.; Nichols, P. J. J. Am. Chem. Soc. 1995, 117, 4415.
(b) Onozawa, S.; Sakakura, T.; Tanaka, M. Tetrahedron Lett. 1994, 35, 8177.
(c) Molander, G. A.; Nichols, P. J.; Noll, B. C. J. Org. Chem. 1998, 63, 2292.
(d) Molander, G. A.; Dowdy, E. D.; Schumann, H. J. Org. Chem. 1998, 63, 3386.

(7) (a) Onozawa, S.; Hatanaka, Y.; Choi, N.; Tanaka, M. Organometallics
1997, 16, 5389. (b) Ojima, I.; Donovan, R. J.; Shay, W. R. J. Am. Chem. Soc.
1998, 114, 6580. (c) Tamao, K.; Kobayashi, K.; Ito, Y. J. Am. Chem. Soc.
1989, 111, 6478. (d) Ojima, I.; Zhu, J.; Vidal, E. S.; Kass, D. F. J. Am. Chem. Soc.
1998, 120, 6690. (e) Molander, G. A.; Retsch, W. H. J. Am. Chem. Soc.
1997, 119, 8817.

(8) Widenhoefer, R. A.; DeCarli, M. A. J. Am. Chem. Soc. 1998, 120, 3805.
(9) Stengone, C. N.; Widenhoefer, R. A. Tetrahedron Lett. 1999, 40, 1451.

Scheme 1

 Table 1.
 Asymmetric Cyclization/Hydrosilylation of 1 Employing

 Palladium Bisoxazoline and Pyridine—Oxazoline Precatalysts (5 mol

 %) and HSiEt₃ in CH₂Cl₂

^{*a*} Product ratio and diastereomeric excess determined by capillary GC. ^{*b*}Enantiomeric excess determined by capillary chiral GC.

feasibility of the analogous asymmetric protocol. Here we report the first examples of asymmetric cyclization/hydrosilylation.

Our initial approach toward the development of an asymmetric cyclization/hydrosilylation protocol employed cationic palladium bisoxazoline compounds as catalysts due to the wealth of asymmetric transformations which utilize these ligands² and their availability.¹⁰ For example, reaction of 1 and HSiEt₃ in the presence of a 1:1 mixture of (N-N)Pd(Me)Cl [N-N = 4,4'dibenzyl-4,5,4',5'-tetrahydro-2,2'-bisoxazoline] (4) and NaBAr'₄¹¹ (5 mol %) at -30 °C for 24 h led to isolation of a 8.1:1 mixture of silvlated carbocycle 3 (95% de, 72% ee) and dimethyl 3,4dimethylcyclopentane-1,1-dicarboxylate¹² (5) in 64% combined yield (Table 1, entry 1). Unfortunately, this protocol led to only modest levels of stereo-induction and also suffered from sluggish reaction rates, low yield, low chemoselectivity, and lack of generality. Because none of these limitations was observed with phenanthroline catalyst 2^{8} , we reasoned that the limitations associated with precatalyst 4 stemmed from excessive steric crowding near the coordination plane. In addition, because both achiral catalyst 2 and the chiral catalyst generated from 4 converted 1 to 3 with high trans-selectivity, we reasoned that a potential chiral catalyst need set only one of the two stereocenters of the carbocycle.

 ^{(1) (}a) Hudlicky, T.; Price, J. D. Chem. Rev. 1989, 89, 1467. (b) Trost, B.
 M. Chem. Soc. Rev. 1982, 11, 141.
 (2) (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev.

^{(2) (}a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (c) Trost, B. M. Science 1991, 254, 1471. (d) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259. (e) Trost, B. M.; Krische, M. J. Synlett, 1998, 1.

⁽¹⁰⁾ Müller, D.; Umbricht, G.; Weber, B.; Pfaltz, A. *Helv. Chim. Acta* **1991**, 74, 232.

⁽¹¹⁾ Halide abstraction forms the cationic palladium species in situ: Brookhart, M.; Wagner, M. I.; Balavoine, G. G. A.; Haddou, H. A. J. Am. Chem. Soc. **1994**, *116*, 3641.

^{(12) (}a) Kuehne, M. E.; Damon, R. E. J. Org. Chem. **1977**, 42, 1825. (b) Curran, D. P.; Shen, W. J. Am. Chem. Soc. **1993**, 115, 6051.

Table 2. Asymmetric Cyclization/Hydrosilylation of 1,6-dienes Employing a 1:1 Mixture of **6** and NaBAr'₄ (5 mol %) in CH_2Cl_2

				Carbocycle		
Entry	Diene	Silane	Temp (°C)ª	Yield (%) [⊳]	de (%)°	ее (%)
	E			E E		`SiR₃
1	E = CO ₂ Me	HSiMe ₂ CMe ₃	-40	87	97	89 ^d
2		HSiMe ₂ Et	-18	71	98	82 ^d
3	$E = CO_2CMe_3$	HSiMe ₂ Ph	-40 ^f	59 ⁹	≥95	87 ^e
4		HSiEt ₃	-40 ^f	79 ^g	≥98	90 ^d
5	E = CO ₂ Bn		-40	83	95	86 ^d
6	E = CO ₂ <i>i</i> -Pr		-40	75	98	85 ^d
	OR				Me	SiEt ₃
7	R - Bn		_10	01	95	70 ^d
י 8			-18	89	98	86 ^d
9	R = COCMe ₃		-18	89	97	91 ^d
				Е.,, R ^{,,,,}	J. Me	`SiEt ₃
10	$(E = CO_2 Me)$		10	74		ooe.h
10	$R = SO_2 me$ R = Ph		-10	74 94	44	o∠ goe,h
			-10	E E		SiEt₃ ∠R
10	$(E = CO_2 Me)$		40	70	02	o c e
12	n = Me R - Ru		-40	75	92	87 ^e
13	Me Me E		-40		Me Me	.SiEt ₃
14	E = CO ₂ Me		-18	62	95	81 ^e

^{*a*} Reaction times: -18 °C, 12 h; -40 °C, 48 h. ^{*b*}Yield refers to isolated material of >95% purity. ^cDiastereomeric excess determined by capillary GC. ^{*d*}Enantiomeric excess determined by chiral capillary GC. ^{*e*}Enantiomeric excess determined by ¹H NMR spectroscopy employing Eu(hfc)₃. ^{*f*}10 Mol % catalyst employed. ^{*g*}Product isolated as the corresponding dicarbomethoxy derivative. ^{*h*}Enantiomeric excess of major diastereomer.

The above hypotheses pointed to the palladium pyridine– oxazoline complexes (N-N)Pd(Me)Cl [N-N = 4-R-2-(2-pyridinyl)-2-oxazoline, R = *i*-Pr (6), Me (7), *i*-Bu (8), *t*-Bu (9)] as cyclization/hydrosilylation precatalysts.¹³ Significantly, employment of complex 6 as a cyclization/hydrosilylation precatalyst led to marked improvement in yield, chemoselectivity, and stereoselectivity relative to bisoxazoline precatalyst 4 (Table 1, entries 2–5). For example, reaction of 1 and HSiEt₃ at -32 °C in the presence of a 1:1 mixture of valinol-derived precatalyst 6 and NaBAr'₄ (5 mol %) for 24 h led to the isolation of carbocycle 3 in 82% isolated yield (98% de, 87% ee), without formation of detectable quantities of 5 (Table 1, entry 2). The methyl-substituted precatalyst 7 and the leucinol-derived precatalyst 8 afforded lower stereoselectivity than did 6 (Table 1, entries 3, 4), while the *tert*-leucinol derived precatalyst 9 suffered from diminished chemo- and diastereoselectivity relative to 6 (Table 1, entry 5).

The scope of asymmetric cyclization/hydrosilylation was probed with respect to diene and silane employing precatalyst **6** (Table 2). Significantly, the protocol consistently produced high levels of diastereo- (>95%) and enantioselectivity (>85%) with a wide range of substrates and silanes. For example, the protocol tolerated a variety of silanes including dimethyl-*tert*-butylsilane, dimethylethylsilane, and dimethylphenylsilane (Table 2, entries 1–3). Similarly, a range of diesters (Table 2, entries 3–6), protected diols (Table 2, entries 7–9), and monoesters (Table 2, entries 10 and 11) underwent cyclization/hydrosilylation in good yield and with good enantioselectivity. In addition, dienes substituted at a terminal olefinic carbon atom or at an allylic carbon atom also underwent cyclization/hydrosilylation in high yield and with good regio- and stereoselectivity (Table 2, entries 12-14).

In summary, optically pure, cationic palladium pyridine oxazoline complexes catalyze the asymmetric cyclization/hydrosilylation of functionalized 1,6-dienes. This procedure generates two adjacent stereocenters with complete (>95%) diastereoselectivity and up to 91% ee. In addition, our preliminary results indicate that palladium pyridine—oxazoline catalysts tolerate a range of silanes and dienes. We are currently working toward the development of more efficient and more stereoselective catalysts for asymmetric cyclization/hydrosilylation.

Acknowledgment. R.W. thanks the Camille and Henry Dreyfus Foundation for a New Faculty Award. Additional funding was provided by the Petroleum Research Fund. We thank Dr. B. Krzyzanowska for synthesizing 4,4-dicarbomethoxy-1,6-(E)-octadiene and 4,4-dicarbomethoxy-1,6-(E)-undecadiene.

Supporting Information Available: Experimental procedures, spectroscopic and analytical data for new compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA990461O

⁽¹³⁾ For the synthesis and applications of pyridine-oxazoline ligands, see: (a) Bolm, C.; Weickhardt, K.; Zehnder, M.; Ranff, T. *Chem. Ber.* **1991**, *124*, 1173. (b) Nishiyama, H.; Sakaguchi, H.; Nakamura, T.; Horihata, M.; Kondo, M.; Itoh, K. *Organometallics* **1989**, *8*, 846. (c) Brunner, H.; Obermann, U. *Chem. Ber.* **1989**, *122*, 499.